RESURF - solution to nurb surface fittingr Computer Aided Design (CAD)
    Home | Products | Purchase | Change log & Road map | Gallery |   Support | Download |  Contact |  中文

Home > Documentation for RhinoResurf

Table of Contents

1. Introduction

Download and Install RhinoResurf for Rhino 4 (32-bit) and Rhino 5/6(64-bit)

Loading RhinoResurf into Rhino 4.0 (32-bit) and 5/6(64-bit)

License Agreement

2. Command Reference

Command Reference

RsPoints2Surf

RsMesh2Surf

RsMesh2StarFace

RsCurves2Surf

RsMesh2Surfs

RsAutoNurbs

RsPointCloud2Mesh

RsSplitCurveNetwork

RsMergeMeshs

RsFillMeshholes

RsFaceFromLines

RsFaceFromPolygon

RsMesh2SurfDyna

RsFillHoleBySurf

RsrMeshFlatten

3. Tutorials

Tutorials

Tutorial 1 - Convert a mesh to a surface

Tutorial 2 - Convert a surface from a sub-mesh

Tutorial 3 - Drape a surface over a point cloud

Tutorial 4 - Convert a mesh to multiple surfaces with quad face

Tutorial 5 - Use Fix button to smooth the wavy surface in _RsMesh2Surfs

Tutorial 6 - Convert a mesh to multiple surfaces with trimmed surface

Tutorial 7 - Automatic surfaces (solid) generation from mesh

Tutorial 8 - Single surface from curves

Tutorial 9 - Point cloud to mesh

Tutorial 10 - 6 Steps to create a solid from mesh by using RhinoResurf

Tutorial 11 - Fit mesh to NURBS surface by specifying shape type. ( Command: _RsMesh2Surf in RhinoResurf for Rhino 4 or 5)

Tutorial 12 -morph the geometry from original mesh data to compensated mesh data by using command _RsSurfacemap

Tutorial 13 -Point cloud to trimmed surfaceorph the geometry from original mesh data to compensated mesh data by using command _RsSurfacemap

Tutorial 14 -Create multiple surfaces by using command 'CreateQuadMesh' and '_RsMesh2SurfsByPolygon' in Rhino 6 (SR10 or greater)

Tutorial 15 -Fill hole with surface on G1 continuity with neighbor patches

Tutorial 16 -Unfold 3D mesh into 2D mesh

Tutorial 17 - Method for quickly converting cylindrical topology mesh surface into smooth NURBS surface

4. FAQs

FAQ 1 - Why RhinoResurf register dialog does not display in my Rhino

 

 

Tutorial 17 - Method for quickly converting cylindrical topology mesh surface into smooth NURBS surface


In this tutorial we will show how to convert a 3D cylinder topologic mesh ( e.g a shoe last surface) into NURB surface.

Command used: RsMesh2Surf, MeshSplit, RsMergeMeshs

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq57WYDIYUEiaZc4c9WWq4yMRd5h9OChA2gGKPFTavTJuHS9IoO426NXAA/640?wx_fmt=png

 

The NURBS surface reconstruction method introduced in this article is applicable to the latest version of RhinoResurf V3.320 for Rhino 6 and RhinoResurf V3.320 for Rhino 5 64-bit.

 

For complex mesh surfaces, usually reverse engineering software will complete the NURBS surface reconstruction through the "region-facet" step. But the RhinoResurf can classify according to the overall topological shape of the mesh model and reconstruct the corresponding smooth surface. This article introduces the method of using RhinoResurf to quickly convert a shoe last mesh surface into a smooth NURBS surface. As shown in the figure above, the shoe last surface (no bottom face, no top face) is a "cylindrical topology" surface, so it can be directly reconstructed into a NURBS surface with a non-periodic U direction and a periodic V direction. This surface is smooth and continuous everywhere, suitable for high-precision machining occasions. The following Figure 1 and Figure 3 are the original mesh model of the last, and Figure 2 and Figure 4 are the reconstructed NURBS surface model.

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq57vvwG9JltBibfjoRYC6M2FaRAeze2sw6RK76kib0GZnxzMsfHQha6MhA/640?wx_fmt=png

Figure 1. mesh model of shoe last

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq5ibqS2VV3PgerqDDEWicotdoJEPZqVEoLMicZP3ORlNozBLBNNLiagrjlfQ/640?wx_fmt=png

Figure 2. A single smooth NURBS surface reconstructed based on the shoe last mesh model (with closed periodicity in the V direction)

 

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq5sUSFUhicbqCaJHbcqysIywUSc7ckyM6LsVc3rd8UK6oib26x5sVdPSMQ/640?wx_fmt=png

Figure 3, shoe last mesh model (viewed from the bottom up)

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq5VxrkvTKq9CDibGjKV0RPFibqhrVibnfs2mhXCmK33ueDWzNGf4ZXBGrPg/640?wx_fmt=png

Figure 4, the shoe last NURBS surface viewed from the bottom up

 

RhinoResurf is a very simple and efficient tool for making such a complex large surface, and it can be completed in a few steps. You can save time and spend your time enjoying life.

Step 1: Import the mesh model in Rhino, as shown in Figure 1 above;

Step 2: (You can skip this step if you use the plane to create surface, see the above video)Use a plane to cut a section line on the mesh. Create a plane that passes through this mesh, as shown in Figure 5 below. Note that the intersection of the plane and the mesh model at the heel of the shoe is perpendicular to the sole surface (the red line in Figure 6). Then call the _MeshSplit command, select the plane as the cutting tool to split the mesh model into two meshes, and finally call the command _RsMergeMeshs, directly pick up the two split meshes, press the right mouse button to combine them into a mesh, As shown in Figure 6, the red line is the dividing line (this line is added here for clarity, and will not be displayed during the mesh division and merge process).

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq5o2XP0xjNIJAOJnbOaj46M6jdC6ImibuNNjM9bXNC85qnSJbN2gWib3Dg/640?wx_fmt=png

Figure 5. The plane intersects the mesh

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq5jfKoiaCCh1UKQXQ88PF1oReyacPpBRPVHYK8J2BibaOOj11vnsbOpWDA/640?wx_fmt=png

Figure 6, the mesh after the plane is divided and merged, the red line is the intersection line of the division

 

Step 3: Create a surface. Enter the command _RsMesh2Surf on the Rhino command line (Note: This command will only be effective after the RhinoResurf plug-in is successfully loaded into Rhino). Pick the mesh and press the right mouse button. The program will pop up the following dialog box (Figure 7).

Figure 7. surface reconstruction dialog

 

Pull the "shape" option box, select "cylinder (quick)", then the Rhino prompt will show 'Select options ( Plane Vertex Exit ):' , this means user has 2 methods to create an iso-line on the mesh , one is to select a plane (Plane option), the other is to selecting 2 vertexes (vertex option). (see Figure 8)

Figure 8, Rhino command line prompt information: select option

In this case, we select 2 Vertexes ( for the case of 'select plane', see the above video), then in Rhino prompt you will see "pick two vertices on the two boundary lines of the mesh to generate the parameter line, if not, please press Right mouse button skip this step "(Figure 9), you can directly press the right mouse button to skip" pick ", return to the dialog box shown in Figure 7, and press the" Apply "button in the dialog box, the program will start to calculate . In this case, wepick the two points on the shoe top boundary line and the shoe sole boundary line respevtively at the red dividing line shown in Figure 6, and press the right mouse button to return to the dialog box shown in Figure 7, and click the "Apply" button in the dialog box, the program starts to calculate.

Figure 9, Rhino command line prompt information

 

Later, the shoe last NURBS surface will be reconstructed, as shown below:

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq5c2XiaO3EwyXgOGWlScOYemYBGdmSOX1NiavCXf8GXwCUcsgu6tfYLCGQ/640?wx_fmt=png

Figure 10, after the surface reconstruction is successful, the mesh model and the surface model overlap display

Figures 11 to 14 below show the deviation graph between the NURBS surface and the mesh surface.

Figure 11, the deviation diagram between the surface model and the mesh model (the maximum is 0.17 mm, most of them are within a small deviation range)

Figure 12, the deviation diagram of the deviation between the surface model and the mesh model at another angle (maximum 0.17 mm, most within a small deviation range)

 

Figure 13, the deviation diagram of the deviation between the surface model and the mesh model at another angle (maximum 0.17 mm, most within a small deviation range)

 

Figure 14, from the bottom up, the deviation diagram between the surface model and the mesh model (the maximum is 0.17 mm, most of them are within a small deviation range)

Figures 15 to 17 below are the zebra smooth analysis of NURBS surface.

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq5aaUlWXmVsFg09VyMvUYxfJzFLiaz2ZA3EOfUeWTPyJgDF5sNa6tpWsA/640?wx_fmt=png

Figure 15. Zebra analysis of surface smoothness

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq5wojRGqYthicC95ST7FJyuZlk5q0eabadiab1K67zsc7IAmg1RH48BZ2Q/640?wx_fmt=png

Figure 16, Zebra analysis of surface smoothness (the other side of view)

https://mmbiz.qpic.cn/sz_mmbiz_png/gS8wUqbcRfhOjia4pDbrHYDymMkYFwDq588eGDoU46wXcKMQj4mehJIibBKgxSoVDrC128KlI26hE8s1alhzcoBg/640?wx_fmt=png

Figure 17, Zebra analysis of the smoothness of the surface (look up from the bottom)

As you can see in this article, it is so simple to use RhinoResurf to reconstruct the smooth NURBS surface of the last.

 

Order RhinoResurf...



 

Copyright (C) 2007-2020 RESURF All Rights Reserved. Privacy Statement